
The BondMachine project

Mirko Mariotti 1,2 Giulio Bianchini 1 Loriano Storchi 3,2 Giacomo Surace 2

Daniele Spiga 2 Diego Ciangottini 2

1Dipartimento di Fisica e Geologia, Universitá degli Studi di Perugia

2INFN sezione di Perugia

3Dipartimento di Farmacia, Universitá degli Studi G. D’Annunzio

M.Mariotti, 30/11/2023 The BondMachine Project 1



Outline

1 Introduction
Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 2



Hands-on sessions

During the lecture some topic will have a hands-on session.
The code is available at the GitHub repository:

https://github.com/BondMachineHQ/bmexamples

To download the code, open a terminal and type:
git clone https://github.com/BondMachineHQ/bmexamples.git

Inside the folder bmexamples you will find the examples. They will work either on the
terminal or on the Jupyter notebooks.
Each directory contains a project and is referred by a number in the slides (as for
example shows the next slide).
Directories that not start with a number are not covered in the lecture but are part of
the default BondMachine examples and available for you to play with.

M.Mariotti, 30/11/2023 The BondMachine Project 3

https://github.com/BondMachineHQ/bmexamples


Framework installation
Hands-on N.00

It will be shown how:

� To install the BondMachine framework

� Make it available in a Jupyter notebook

M.Mariotti, 30/11/2023 The BondMachine Project 4



Introduction
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 5



Current challenges in computing

� Von Neumann Bottleneck:
New computational problems show that current architectural models has to be
improved or changed to address future payloads.

� Energy Efficient computation:
Not wasting "resources" (silicon, time, energy, instructions).
Using the right resource for the specific case

� Edge/Fog/Cloud Computing:
Making the computation where it make sense
Avoiding the transfer of unnecessary data
Creating consistent interfaces for distributed systems

M.Mariotti, 30/11/2023 The BondMachine Project 6



Current challenges in computing

� Von Neumann Bottleneck:
New computational problems show that current architectural models has to be
improved or changed to address future payloads.

� Energy Efficient computation:
Not wasting "resources" (silicon, time, energy, instructions).
Using the right resource for the specific case

� Edge/Fog/Cloud Computing:
Making the computation where it make sense
Avoiding the transfer of unnecessary data
Creating consistent interfaces for distributed systems

M.Mariotti, 30/11/2023 The BondMachine Project 6



Current challenges in computing

� Von Neumann Bottleneck:
New computational problems show that current architectural models has to be
improved or changed to address future payloads.

� Energy Efficient computation:
Not wasting "resources" (silicon, time, energy, instructions).
Using the right resource for the specific case

� Edge/Fog/Cloud Computing:
Making the computation where it make sense
Avoiding the transfer of unnecessary data
Creating consistent interfaces for distributed systems

M.Mariotti, 30/11/2023 The BondMachine Project 6



FPGA

A field programmable gate array (FPGA) is an integrated
circuit whose logic is re-programmable.

� Parallel computing
� Highly specialized
� Energy efficient

� Array of programmable logic blocks
� Logic blocks configurable

to perform complex functions
� The configuration is specified

with the hardware description language

FIRMWARE

M.Mariotti, 30/11/2023 The BondMachine Project 7



FPGA
Use in computing

The use of FPGA in computing is growing due several reasons:

� can potentially deliver great performance via massive parallelism

� can address payloads which are not performing well on uniprocessors (Neural
Networks, Deep Learning)

� can handle efficiently non-standard data types

M.Mariotti, 30/11/2023 The BondMachine Project 8



FPGA
Use in computing

The use of FPGA in computing is growing due several reasons:

� can potentially deliver great performance via massive parallelism

� can address payloads which are not performing well on uniprocessors (Neural
Networks, Deep Learning)

� can handle efficiently non-standard data types

M.Mariotti, 30/11/2023 The BondMachine Project 8



FPGA
Use in computing

The use of FPGA in computing is growing due several reasons:

� can potentially deliver great performance via massive parallelism

� can address payloads which are not performing well on uniprocessors (Neural
Networks, Deep Learning)

� can handle efficiently non-standard data types

M.Mariotti, 30/11/2023 The BondMachine Project 8



Integration of neural networks on FPGA

FPGAs are playing an increasingly important role in the industry sampling and data
processing.

Deep Learning

In the industrial field
� Intelligent vision;
� Financial services;
� Scientific simulations;
� Life science and medical data analysis;

In the scientific field
� Real time deep learning in particle

physics;
� Hardware trigger of LHC experiments;
� And many others ...

M.Mariotti, 30/11/2023 The BondMachine Project 9



FPGA
Challenges in computing

On the other hand the adoption on FPGA poses several challenges:

� Porting of legacy code is usually hard.

� Interoperability with standard applications is problematic.

M.Mariotti, 30/11/2023 The BondMachine Project A



FPGA
Challenges in computing

On the other hand the adoption on FPGA poses several challenges:

� Porting of legacy code is usually hard.

� Interoperability with standard applications is problematic.

M.Mariotti, 30/11/2023 The BondMachine Project A



Firmware generation
Many projects have the goal of abstracting the firmware generation and use process.

High Level

Low Level

FIRMWARE

M.Mariotti, 30/11/2023 The BondMachine Project B



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing units execute multiple
instructions at the same time.
I The power is given by the number of cores.
I Parallelism has to be addressed.

� Heterogeneous, different types of processing units.
I Cell, GPU, Parallela, TPU.
I The power is given by the specialization.
I The units data transfer has to be addressed.
I The payloads scheduling has to be addressed.

M.Mariotti, 30/11/2023 The BondMachine Project C



The BondMachine
First idea

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in
cores types and interconnections) which dynamically adapt to the specific

computational problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Specializa-
tion

M.Mariotti, 30/11/2023 The BondMachine Project D



The BondMachine
First idea

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in
cores types and interconnections) which dynamically adapt to the specific

computational problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Specializa-
tion

M.Mariotti, 30/11/2023 The BondMachine Project D



The BondMachine
First idea

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in
cores types and interconnections) which dynamically adapt to the specific

computational problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Specializa-
tion

M.Mariotti, 30/11/2023 The BondMachine Project D



The BondMachine
First idea

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in
cores types and interconnections) which dynamically adapt to the specific

computational problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Specializa-
tion

M.Mariotti, 30/11/2023 The BondMachine Project D



The BondMachine
First idea

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in
cores types and interconnections) which dynamically adapt to the specific

computational problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Specializa-
tion

M.Mariotti, 30/11/2023 The BondMachine Project D



Layer, Abstractions and Interfaces

A Computing system is a matter of abstraction and interfaces. A lower layer exposes its
functionalities (via interfaces) to the above layer hiding (abstraction) its inner details.

The quality of a computing system is determined by how abstractions are simple and
how interfaces are clean.

M.Mariotti, 30/11/2023 The BondMachine Project E



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine

Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel

System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library

Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter

Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance

So
ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance

So
ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance

So
ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
An example

Programming language

Compiler/Interpreter Language

User mode

Standard Library Stl calls

Kernel mode

Kernel
System calls

Processor

Register Machine Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project F



Layers, Abstractions and Interfaces
The second idea

Rethinking the stack
Build a computing system with a decreased
number of layers resulting in a minor gap
between HW and SW but keeping an user

friendly way of programming it.

M.Mariotti, 30/11/2023 The BondMachine Project 10



The BondMachine project
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 11



Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic generation of computer
architectures that:

� Are composed by many, possibly hundreds, computing cores.
� Have very small cores and not necessarily of the same type (different ISA and ABI).
� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for example channels and shared

memories).

M.Mariotti, 30/11/2023 The BondMachine Project 12



Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic generation of computer
architectures that:

� Are composed by many, possibly hundreds, computing cores.
� Have very small cores and not necessarily of the same type (different ISA and ABI).
� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for example channels and shared

memories).

M.Mariotti, 30/11/2023 The BondMachine Project 12



Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic generation of computer
architectures that:

� Are composed by many, possibly hundreds, computing cores.
� Have very small cores and not necessarily of the same type (different ISA and ABI).
� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for example channels and shared

memories).

M.Mariotti, 30/11/2023 The BondMachine Project 12



Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic generation of computer
architectures that:

� Are composed by many, possibly hundreds, computing cores.
� Have very small cores and not necessarily of the same type (different ISA and ABI).
� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for example channels and shared

memories).

M.Mariotti, 30/11/2023 The BondMachine Project 12



Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic generation of computer
architectures that:

� Are composed by many, possibly hundreds, computing cores.
� Have very small cores and not necessarily of the same type (different ISA and ABI).
� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for example channels and shared

memories).

M.Mariotti, 30/11/2023 The BondMachine Project 12



The BondMachine
An example

M.Mariotti, 30/11/2023 The BondMachine Project 13



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

General purpose registers

2R registers: r0,r1,r2,r3 ... r2R

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

I/O specialized registers
N input registers: i0,i1 ... iN

M output registers: o0,o1 ... oM

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

Full set of possible opcodes
adc,add,addf,addf16,addi,addp,and,chc,chw,cil,cilc,cir,cirn,clc,clr,cmpr,cpy,cset,dec,div
divf,divf16,divp,dpc,expf,hit,hlt,i2r,i2rw,incc,inc,j,ja,jc,jcmpa,jcmpl,jcmpo,jcmpria
jcmprio,je,jri,jria,jrio,jgt0f,jo,jz,k2r,lfsr82r,m2r,m2rri,mod,mulc,mult,multf,multf16
multp,nand,nop,nor,not,or,q2r,r2m,r2mri,r2o,r2owa,r2owaa,r2q,r2s,r2v,r2vri,r2t,r2u,ro2r
ro2rri,rsc,rset,sic,s2r,saj,sbc,sub,t2r,u2r,wrd,wwr,xnor,xor

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

RAM and ROM
� 2L RAM memory cells.
� 2O ROM memory cells.

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many available.
� Dedicated ROM and RAM.
� Three possible operating modes.

Operating modes
� Full Harvard mode.
� Full Von Neuman mode.
� Hybrid mode.

M.Mariotti, 30/11/2023 The BondMachine Project 14



Connecting Processor (CP)
More on instructions

The HDL code of the aforementioned opcodes is statically defined, and adding
instructions to a CP includes the HDL code of the instructions in the CP HDL code.

Procbuilder also support the dynamic creation of new instructions created at runtime
(the creation runtime not the FPGA). It can be for example HDL code generated by an
external tool, or an instruction that changes according to some input data.
Here the list of current dynamic instructions:
� FloPoCo: A floating point unit generator.
� Linear Quantizer: A linear quantizer operation generator.
� Rsets: Static Register set with fixed size.
� Call: Call instruction with hardware based stack.
� Stack: Stack instruction with hardware based stack.
� fixed point: Fixed point arithmetic.

M.Mariotti, 30/11/2023 The BondMachine Project 15



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called “Shared Objects”
(SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions
(opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel, the Shared Memory, the
Barrier and a Pseudo Random Numbers Generator.

M.Mariotti, 30/11/2023 The BondMachine Project 16



Channel

The Channel SO is an hardware implementation of the CSP (communicating sequential
processes) channel.

It is a model for inter-core communication and synchronization via message passing.

CPs use channels via 4 opcodes
� wrd: Want Read.
� wwr: Want Write.
� chc: Channel Check.
� chw: Channel Wait.

M.Mariotti, 30/11/2023 The BondMachine Project 17



Channel

The Channel SO is an hardware implementation of the CSP (communicating sequential
processes) channel.

It is a model for inter-core communication and synchronization via message passing.

CPs use channels via 4 opcodes
� wrd: Want Read.
� wwr: Want Write.
� chc: Channel Check.
� chw: Channel Wait.

M.Mariotti, 30/11/2023 The BondMachine Project 17



Channel

The Channel SO is an hardware implementation of the CSP (communicating sequential
processes) channel.

It is a model for inter-core communication and synchronization via message passing.

CPs use channels via 4 opcodes
� wrd: Want Read.
� wwr: Want Write.
� chc: Channel Check.
� chw: Channel Wait.

M.Mariotti, 30/11/2023 The BondMachine Project 17



Shared Memory

The Shared Memory SO is a RAM block accessible from more than one CP.

Different Shared Memories can be used by different CP and not necessarily by all of
them.

CPs use shared memories via 2 opcodes
� s2r: Shared memory read.
� r2s: Shared memory write.

M.Mariotti, 30/11/2023 The BondMachine Project 18



Shared Memory

The Shared Memory SO is a RAM block accessible from more than one CP.

Different Shared Memories can be used by different CP and not necessarily by all of
them.

CPs use shared memories via 2 opcodes
� s2r: Shared memory read.
� r2s: Shared memory write.

M.Mariotti, 30/11/2023 The BondMachine Project 18



Shared Memory

The Shared Memory SO is a RAM block accessible from more than one CP.

Different Shared Memories can be used by different CP and not necessarily by all of
them.

CPs use shared memories via 2 opcodes
� s2r: Shared memory read.
� r2s: Shared memory write.

M.Mariotti, 30/11/2023 The BondMachine Project 18



Barrier

The Barrier SO is used to make CPs act synchronously.

When a CP hits a barrier, the execution stop until all the CPs that share the same
barrier hit it.

CPs use barriers via 1 opcode
� hit: Hit the barrier.

M.Mariotti, 30/11/2023 The BondMachine Project 19



Barrier

The Barrier SO is used to make CPs act synchronously.

When a CP hits a barrier, the execution stop until all the CPs that share the same
barrier hit it.

CPs use barriers via 1 opcode
� hit: Hit the barrier.

M.Mariotti, 30/11/2023 The BondMachine Project 19



Barrier

The Barrier SO is used to make CPs act synchronously.

When a CP hits a barrier, the execution stop until all the CPs that share the same
barrier hit it.

CPs use barriers via 1 opcode
� hit: Hit the barrier.

M.Mariotti, 30/11/2023 The BondMachine Project 19



Multicore and Heterogeneous
First idea on the BondMachine

The idea was:

Having a multi-core architecture completely heterogeneous both in cores types and interconnections.

The BondMachine may have many cores,
eventually all different, arbitrarily interconnected

and sharing non computing elements.

M.Mariotti, 30/11/2023 The BondMachine Project 1A



Handle BM computer architectures
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single pro-
cessor, assembles and
disassembles, saves on
disk as JSON, creates
the HDL code of a CP

BondMachine Builder

Connects CPs and SOs
together in custom
topologies, loads and
saves on disk as JSON,
create BM’s HDL code

Simulation Framework

Simulates the be-
haviour, emulates a BM
on a standard Linux
workstation

M.Mariotti, 30/11/2023 The BondMachine Project 1B



Handle BM computer architectures
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single pro-
cessor, assembles and
disassembles, saves on
disk as JSON, creates
the HDL code of a CP

BondMachine Builder

Connects CPs and SOs
together in custom
topologies, loads and
saves on disk as JSON,
create BM’s HDL code

Simulation Framework

Simulates the be-
haviour, emulates a BM
on a standard Linux
workstation

M.Mariotti, 30/11/2023 The BondMachine Project 1B



Handle BM computer architectures
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single pro-
cessor, assembles and
disassembles, saves on
disk as JSON, creates
the HDL code of a CP

BondMachine Builder

Connects CPs and SOs
together in custom
topologies, loads and
saves on disk as JSON,
create BM’s HDL code

Simulation Framework

Simulates the be-
haviour, emulates a BM
on a standard Linux
workstation

M.Mariotti, 30/11/2023 The BondMachine Project 1B



Handle BM computer architectures
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single pro-
cessor, assembles and
disassembles, saves on
disk as JSON, creates
the HDL code of a CP

BondMachine Builder

Connects CPs and SOs
together in custom
topologies, loads and
saves on disk as JSON,
create BM’s HDL code

Simulation Framework

Simulates the be-
haviour, emulates a BM
on a standard Linux
workstation

M.Mariotti, 30/11/2023 The BondMachine Project 1B



Processor Builder

Procbuilder is the CP manipulation tool.

CP Creation
CP Load/Save
CP Assembler/Disassembler
CP HDL

Examples
(32 bit registers counter machine)

procbuilder -register-size 32 -opcodes clr,cpy,dec,inc,je,jz

(Input and Output registers)

procbuilder -inputs 3 -outputs 2 ...

M.Mariotti, 30/11/2023 The BondMachine Project 1C



Processor Builder

Procbuilder is the CP manipulation tool.

CP Creation
CP Load/Save
CP Assembler/Disassembler
CP HDL

Examples
(Loading a CP)

procbuilder -load-machine conproc.json ...

(Saving a CP)

procbuilder -save-machine conproc.json ...

M.Mariotti, 30/11/2023 The BondMachine Project 1C



Processor Builder

Procbuilder is the CP manipulation tool.

CP Creation
CP Load/Save
CP Assembler/Disassembler
CP HDL

Examples
(Assembiling)

procbuilder -input-assembly program.asm ...

(Disassembling)

procbuilder -show-program-disassembled ...

M.Mariotti, 30/11/2023 The BondMachine Project 1C



Processor Builder

Procbuilder is the CP manipulation tool.

CP Creation
CP Load/Save
CP Assembler/Disassembler
CP HDL

Examples
(Create the CP RTL code in Verilog)

procbuilder -create-verilog ...

(Create testbench)

procbuilder -create-verilog-testbench test.v ...

M.Mariotti, 30/11/2023 The BondMachine Project 1C



Procbuilder Hands-on
Hands-on N.01

It will be shown how:

� To create a simple processor

� To assemble and disassemble code for it

� To produce its HDL code

M.Mariotti, 30/11/2023 The BondMachine Project 1D



BondMachine Builder

Bondmachine is the tool that compose CP and SO to form BondMachines.

BM CP insert and remove
BM SO insert and remove
BM Inputs and Outputs
BM Bonding Processors and/or IO
BM Visualizing or HDL

Examples
(Add a processor)

bondmachine -add-domains proc.json ... ; ... -add-processor 0

(Remove a processor)

bondmachine -bondmachine-file bmach.json -del-processor n

M.Mariotti, 30/11/2023 The BondMachine Project 1E



BondMachine Builder

Bondmachine is the tool that compose CP and SO to form BondMachines.

BM CP insert and remove
BM SO insert and remove
BM Inputs and Outputs
BM Bonding Processors and/or IO
BM Visualizing or HDL

Examples
(Add a Shared Object)

bondmachine -add-shared-objects specs ...

(Connect an SO to a processor)

bondmachine -connect-processor-shared-object ...

M.Mariotti, 30/11/2023 The BondMachine Project 1E



BondMachine Builder

Bondmachine is the tool that compose CP and SO to form BondMachines.

BM CP insert and remove
BM SO insert and remove
BM Inputs and Outputs
BM Bonding Processors and/or IO
BM Visualizing or HDL

Examples
(Adding inputs or outputs)

bondmachine -add-inputs ... ; bondmachine -add-outputs ...
(Removing inputs or outputs)

bondmachine -del-input ... ; bondmachine -del-output ...

M.Mariotti, 30/11/2023 The BondMachine Project 1E



BondMachine Builder

Bondmachine is the tool that compose CP and SO to form BondMachines.

BM CP insert and remove
BM SO insert and remove
BM Inputs and Outputs
BM Bonding Processors and/or IO
BM Visualizing or HDL

Examples
(Bonding processor)

bondmachine -add-bond p0i2,p1o4 ...

(Bonding IO)

bondmachine -add-bond i2,p0i6 ...

M.Mariotti, 30/11/2023 The BondMachine Project 1E



BondMachine Builder

Bondmachine is the tool that compose CP and SO to form BondMachines.

BM CP insert and remove
BM SO insert and remove
BM Inputs and Outputs
BM Bonding Processors and/or IO
BM Visualizing or HDL

Examples
(Visualizing)

bondmachine -emit-dot ...

(Create RTL code)

bondmachine -create-verilog ...

M.Mariotti, 30/11/2023 The BondMachine Project 1E



BondMachine Hands-on
Hands-on N.02

It will be shown how:

� To create a single-core BondMachine

� To attach an external output

� To produce its HDL code

M.Mariotti, 30/11/2023 The BondMachine Project 1F



Toolchain and helper tool
bmhelper

A set of toolchain allow the build and the direct deploy to a target device of
BondMachines.

Plus, an helper tool, called bmhelper has been developed to simplify the creation and
maintenance of the BM Projects.

doctor
Checks whether the
tools are correctly

installed

create
Creates a new BM

project

validate
Validates a BM

project by checking
the presence of all

the necessary
variables

apply
Finalizes the BM
project by adding
the necessary files

M.Mariotti, 30/11/2023 The BondMachine Project 20



Toolchain and helper tool
Makefile

Toolchain main targets
A file local.mk contains references to the source code as well all the build necessities
make bondmachine creates the JSON representation of the BM and assemble its code
make hdl creates the HDL files of the BM
make show displays a graphical representation of the BM
make simulate [simbatch] start a simulation [batch simulation]
make accelerator create an accelerator IP from the BM
make design create an accelerator design
make bitstream [design_bitstream] create the firwware [accelerator firmware]
make program flash the device into the destination target
make xclbin create a platform firmware
make clean remove all the build files

M.Mariotti, 30/11/2023 The BondMachine Project 21



Toolchain and helper tool
Kernel config style

Complementary to the Makefile and the local.mk file, a kernel config style file is used to
specify the build operations.

M.Mariotti, 30/11/2023 The BondMachine Project 22



Toolchain Hands-on
Hands-on N.03

It will be shown how:

� To explore the toolchain

� To flash the board with the code from the previous example

M.Mariotti, 30/11/2023 The BondMachine Project 23



Shared Object Hands-on
Hands-on N.04

It will be shown how:

� To build a BondMachine with a processor and a shared object

� To flash the board

M.Mariotti, 30/11/2023 The BondMachine Project 24



Dual core Hands-on
Hands-on N.05

It will be shown how:

� To build a dual-core BondMachine

� To connect cores

� To flash the board

M.Mariotti, 30/11/2023 The BondMachine Project 25



BondMachine web front-end
Operations on BondMachines can also be performed via an under development web

framework

M.Mariotti, 30/11/2023 The BondMachine Project 26



Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the
simulation timespan and which one has to be be reported.

The simulator can produce results in the form of:
� Activity log of the BM internal.
� Graphical representation of the simulation.
� Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

M.Mariotti, 30/11/2023 The BondMachine Project 27

https://www.youtube.com/watch?v=Cc1Qzioh2Ng


Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the
simulation timespan and which one has to be be reported.

The simulator can produce results in the form of:
� Activity log of the BM internal.
� Graphical representation of the simulation.
� Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

M.Mariotti, 30/11/2023 The BondMachine Project 27

https://www.youtube.com/watch?v=Cc1Qzioh2Ng


Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the
simulation timespan and which one has to be be reported.

The simulator can produce results in the form of:
� Activity log of the BM internal.
� Graphical representation of the simulation.
� Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

M.Mariotti, 30/11/2023 The BondMachine Project 27

https://www.youtube.com/watch?v=Cc1Qzioh2Ng


Simulation Hands-on
Hands-on N.06

It will be shown how:

� To show the simulation capabilities of the framework

M.Mariotti, 30/11/2023 The BondMachine Project 28



Emulation

The simulation facility is not necessarily used for debug purposes, it can be used also to
run payloads without having a real FPGA.

The same engine that simulate BondMachines can be used as emulator.

Through the emulator BondMachines can be used on Linux workstations.

M.Mariotti, 30/11/2023 The BondMachine Project 29



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Molding the BondMachine
As stated before BondMachines are not general purpose architectures, and to be
effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from
scratch) have been developed to do that:

� bondgo: A new type of compiler that create not only the CPs assembly but also
the architecture itself.

� basm: The BondMachine Assembler.

� A set of API to create BondMachine to fit a specific computational problems.

� An Evolutionary Computation framework to “grow” BondMachines according some
fitness function via simulation.

� A set of tools to use BondMachine in Machine Learning.

M.Mariotti, 30/11/2023 The BondMachine Project 2A



Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical

expressions to BM

Boolbond

Map boolean systems
to BM

Matrixwork

Basic matrix
computation

Basm

The BondMachine
assembler

Bondgo

The architecture
compiler

ML tools

Map computational
graphs to BM

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 2B

http://bondmachine.fisica.unipg.it/docs


Bondgo

The major innovation of the BondMachine Project is its compiler.

Bondgo is the name chosen for the compiler developed for the BondMachine.

The compiler source language is Go as the name suggest.

M.Mariotti, 30/11/2023 The BondMachine Project 2C



Bondgo

This is the standard flow when building computer programs

M.Mariotti, 30/11/2023 The BondMachine Project 2D



Bondgo

This is the standard flow when building computer programs

high level language source

M.Mariotti, 30/11/2023 The BondMachine Project 2D



Bondgo

This is the standard flow when building computer programs

high level language source

assembly file

Compiling

M.Mariotti, 30/11/2023 The BondMachine Project 2D



Bondgo

This is the standard flow when building computer programs

high level language source

assembly file

Compiling

machine code

Assembling

M.Mariotti, 30/11/2023 The BondMachine Project 2D



Bondgo

Bondgo does something different from standard compilers ...

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

assembly file

Compiling

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

Processor implementation

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo

Bondgo does something different from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

Processor implementation

M.Mariotti, 30/11/2023 The BondMachine Project 2E



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo workflow example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

M.Mariotti, 30/11/2023 The BondMachine Project 2F



Bondgo

... bondgo may not only create the binaries, but also the CP architecture, and ...

M.Mariotti, 30/11/2023 The BondMachine Project 30



Bondgo Hands-on
Hands-on N.07

It will be shown how:

� To create a BondMachine from a Go source file
� To build the architecture
� To build the program
� To create the firmware and flash it to the board

M.Mariotti, 30/11/2023 The BondMachine Project 31



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries
Interconnections

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo

... it can do even much more interesting things when compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries
BondMachine

M.Mariotti, 30/11/2023 The BondMachine Project 32



Bondgo
A multi-core example

multi-core counter
package main

import (
"bondgo"

)

func pong() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 3)
out0 = bondgo.Make(bondgo.Output , 5)
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0)+1)
}

}

func main() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 5)
out0 = bondgo.Make(bondgo.Output , 3)

device_0:
go pong()
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0))
}

}

M.Mariotti, 30/11/2023 The BondMachine Project 33



Bondgo
A multi-core example

Compiling the code with the bondgo compiler:

bondgo -input-file ds.go -mpm

The toolchain perform the following steps:
� Map the two goroutines to two hardware cores.
� Creates two types of core, each one optimized to execute the assigned goroutine.
� Creates the two binaries.
� Connected the two core as inferred from the source code, using special IO registers.

The result is a multicore BondMachine:

M.Mariotti, 30/11/2023 The BondMachine Project 34



Bondgo
A multi-core example

M.Mariotti, 30/11/2023 The BondMachine Project 35



Compiling Architectures

One of the most important result
The architecture creation is a part of the compilation process.

M.Mariotti, 30/11/2023 The BondMachine Project 36



Bondgo multi core Hands-on
Hands-on N.08

It will be shown how:

� To use bondgo to create a chain of interconnected processors

� To flash the firmware to the board

M.Mariotti, 30/11/2023 The BondMachine Project 37



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to interconnected processors without
Operating Systems or runtimes.

Goroutines Cores

Channels Channel SOs

Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

M.Mariotti, 30/11/2023 The BondMachine Project 38



Go in hardware
Second idea on the BondMachine

The idea was:
Build a computing system with a decreased number of layers resulting in a lower HW/SW gap.

This would raise the overall performances yet keeping an user friendly way of programming.

Between HW and SW there is only the processor
abstraction, no Operating System nor runtimes.
Despite that programming is done at high level.

M.Mariotti, 30/11/2023 The BondMachine Project 39



Layers, Abstractions and Interfaces
and BondMachines

Programming language

Compiler

Language

BondMachine

Register Machine

Opcodes

Transistors

H
ardw

are

Specialization

Perform
ance So

ft
w
ar
e

G
en
er
al
iz
at
io
n

U
se
r
fr
ie
nd

ly

M.Mariotti, 30/11/2023 The BondMachine Project 3A



Bondgo
An example

bondgo stream processing example
package main

import (
"bondgo"

)

func streamprocessor(a *[]uint8 , b *[]uint8 ,
c *[]uint8 , gid uint8) {
(*c)[gid] = (*a)[gid] + (*b)[gid]

}
func main() {

a := make ([]uint8 , 256)
b := make ([]uint8 , 256)
c := make ([]uint8 , 256)

// ... some a and b values fill

for i := 0; i < 256; i++ {
go streamprocessor (&a, &b, &c, uint8(i))

}
}

The compilation of this example results in the creation of a 257 CPs where 256 are the stream processors executing the code
in the function called streamprocessor, and one is the coordinating CP. Each stream processor is optimized and capable
only to make additions since it is the only operation requested by the source code. The three slices created on the main
function are passed by reference to the Goroutines then a shared RAM is created by the Bondgo compiler available to the
generated CPs.

M.Mariotti, 30/11/2023 The BondMachine Project 3B



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
The BondMachine assembler Basm is the compiler complementary tools.

It is a standard assembler that can be used to build code for the BondMachine. Given
the "fluid" nature of the BM architectures, BASM has some unique features:

� Support for code fragments

� Support for template based assembly code

� Fragments composition: combining and rewriting

� Building hardware from assembly

� Software/Hardware rearrange capabilities

� LLVM IR import

M.Mariotti, 30/11/2023 The BondMachine Project 3C



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

Sections are the main building blocks
of the assembly file. They are used to
group together code and data and
are the objects that are actually
loaded in the memory of the
BondMachine (ROM or RAM).

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

.romtext sections contains the code
that will be hardwired in the ROM of
the BondMachine.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

.romdata sections contains the data
that will be hardwired in the ROM of
the BondMachine.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

.ramtext sections contains the code
that will form a CP executable. This
code will be loaded in the RAM of
the BondMachine once the CP is
instantiated and can be replaced at
runtime.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

.ramdata sections contains the data
that accompanies the code in the
.ramtext sections. This data will be
loaded in the RAM of the
BondMachine once the CP is
instantiated and can be replaced at
runtime.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

Macros are used to define code
frequently used in the assembly file.
They are expanded at assembly time
like in most assemblers.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

Chunks are used to define data
structures more complex than simple
variables.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

Fragments small fragments of code
that can be assembled in different
ways to form different CPs. More on
this later.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
File main structure

Section

.romtext .romdata

.ramtext .ramdata

Macro

Chunk

Fragment

Metadata

Metadata is used to define the
properties of the bondmachine that
will be built from the assembly file.
In particular it contains details about
the CPs and SOs interconnections.

M.Mariotti, 30/11/2023 The BondMachine Project 3D



Basm
An example

basm example
%section code1 .romtext

entry _start ; Entry point
_start:

clr r0
rset r0 ,49

rset r1 ,45
mov vtm0:[r1], r0
rset r0, 50
r2v r0, 128
clr r0
j _start

%endsection

%meta cpdef cpu1 romcode: code1 , ramsize :8
%meta sodef videomemory constraint:vtextmem :0:3:3:16:16
%meta soatt videomemory cp: cpu1 , index:0
%meta bmdef global registersize :8

M.Mariotti, 30/11/2023 The BondMachine Project 3E



Basm
Fragments

The Basm fragments are the main feature of the assembler.

They are small pieces of code that can be assembled in different ways to form more
complex code and in the end a CP.
T hey can for example:

� Be called as it were a function
� Be rewritten free or use a particular CP hardware (a register)
� Be logically combined with other fragments via metadata to for abstract graphs

and . . .
� . . . part of these graphs can be placed in different CPs

M.Mariotti, 30/11/2023 The BondMachine Project 3F



Basm
Fragments

The Basm fragments are the main feature of the assembler.

They are small pieces of code that can be assembled in different ways to form more
complex code and in the end a CP.
T hey can for example:

� Be called as it were a function
� Be rewritten free or use a particular CP hardware (a register)
� Be logically combined with other fragments via metadata to for abstract graphs

and . . .
� . . . part of these graphs can be placed in different CPs

M.Mariotti, 30/11/2023 The BondMachine Project 3F



Basm
Fragments

The Basm fragments are the main feature of the assembler.

They are small pieces of code that can be assembled in different ways to form more
complex code and in the end a CP.
T hey can for example:

� Be called as it were a function
� Be rewritten free or use a particular CP hardware (a register)
� Be logically combined with other fragments via metadata to for abstract graphs

and . . .
� . . . part of these graphs can be placed in different CPs

M.Mariotti, 30/11/2023 The BondMachine Project 3F



Basm
Fragments

The Basm fragments are the main feature of the assembler.

They are small pieces of code that can be assembled in different ways to form more
complex code and in the end a CP.
T hey can for example:

� Be called as it were a function
� Be rewritten free or use a particular CP hardware (a register)
� Be logically combined with other fragments via metadata to for abstract graphs

and . . .
� . . . part of these graphs can be placed in different CPs

M.Mariotti, 30/11/2023 The BondMachine Project 3F



Basm
Fragments

The Basm fragments are the main feature of the assembler.

They are small pieces of code that can be assembled in different ways to form more
complex code and in the end a CP.
T hey can for example:

� Be called as it were a function
� Be rewritten free or use a particular CP hardware (a register)
� Be logically combined with other fragments via metadata to for abstract graphs

and . . .
� . . . part of these graphs can be placed in different CPs

M.Mariotti, 30/11/2023 The BondMachine Project 3F



Basm
Templates

Basm support templates. This allows to define generic code that can be instantiated in
different ways from the tools that use the assembler.

For example the template above is used to define the weight of a neural network. The
multiplication operation is specified via template. When filled with a specific operation

the resulting hardware will be optimized for that.

M.Mariotti, 30/11/2023 The BondMachine Project 40



Basm Hands-on
Hands-on N.09

It will be shown how:

� To create a BondMachine from a Basm source file
� To build the accelerator
� To build the xclbin
� To upload the xclbin to the board and use it

M.Mariotti, 30/11/2023 The BondMachine Project 41



Basm
Abstract Assembly

The Assembly language for the BM has been kept as independent as possible from the
particular CP.

Given a specific piece of assembly code Basm has the ability to compute the “minimum
CP” that can execute that code.

These are Building Blocks for complex BondMachines.

M.Mariotti, 30/11/2023 The BondMachine Project 42



Builders API

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

� Symbond, to handle mathematical expression.

� Boolbond, to map boolean expression.

� Matrixwork, to perform matrices operations.

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 43

http://bondmachine.fisica.unipg.it/docs


Builders API

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

� Symbond, to handle mathematical expression.

� Boolbond, to map boolean expression.

� Matrixwork, to perform matrices operations.

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 43

http://bondmachine.fisica.unipg.it/docs


Builders API

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

� Symbond, to handle mathematical expression.

� Boolbond, to map boolean expression.

� Matrixwork, to perform matrices operations.

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 43

http://bondmachine.fisica.unipg.it/docs


Builders API

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

� Symbond, to handle mathematical expression.

� Boolbond, to map boolean expression.

� Matrixwork, to perform matrices operations.

more about these tools

M.Mariotti, 30/11/2023 The BondMachine Project 43

http://bondmachine.fisica.unipg.it/docs


Builders API
Symbond

A mathematical expression, or a system can be converted to a BondMachine:

sum(var(x),const(2))

Boolbond
symbond -expression "sum(var(x),const(2))" -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 44



Builders API
Symbond

A mathematical expression, or a system can be converted to a BondMachine:

sum(var(x),const(2))

Boolbond
symbond -expression "sum(var(x),const(2))" -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 44



Builders API
Symbond

A mathematical expression, or a system can be converted to a BondMachine:

sum(var(x),const(2))

Boolbond
symbond -expression "sum(var(x),const(2))" -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 44



Builders API
Symbond

M.Mariotti, 30/11/2023 The BondMachine Project 45



Builders API
Boolbond

A system of boolean equations, input and output variables are expressed as in the
example file:

var(z)=or(var(x),not(var(y)))
var(t)=or(and(var(x),var(y)),var(z))
var(l)=and(xor(var(x),var(y)),var(t))
i:var(x)
i:var(y)
o:var(z)
o:var(t)
o:var(l)

Boolbond
boolbond -system-file expression.txt -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 46



Builders API
Boolbond

A system of boolean equations, input and output variables are expressed as in the
example file:

var(z)=or(var(x),not(var(y)))
var(t)=or(and(var(x),var(y)),var(z))
var(l)=and(xor(var(x),var(y)),var(t))
i:var(x)
i:var(y)
o:var(z)
o:var(t)
o:var(l)

Boolbond
boolbond -system-file expression.txt -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 46



Builders API
Boolbond

A system of boolean equations, input and output variables are expressed as in the
example file:

var(z)=or(var(x),not(var(y)))
var(t)=or(and(var(x),var(y)),var(z))
var(l)=and(xor(var(x),var(y)),var(t))
i:var(x)
i:var(y)
o:var(z)
o:var(t)
o:var(l)

Boolbond
boolbond -system-file expression.txt -save-bondmachine bondmachine.json

Resulting in:

M.Mariotti, 30/11/2023 The BondMachine Project 46



Builders API
Boolbond

M.Mariotti, 30/11/2023 The BondMachine Project 47



Boolbond Hands-on
Hands-on N.10

It will be shown how:

� To create complex multi-cores from boolean expressions

M.Mariotti, 30/11/2023 The BondMachine Project 48



Builders API
Matrixwork

Matrix multiplication
if mymachine, ok := matrixwork.Build_M(n, t); ok == nil ...

M.Mariotti, 30/11/2023 The BondMachine Project 49



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Evolutionary BondMachine
Find an architecture that solve

a problem

Simulation
Framework

Metrics to check
how well a BM
solve a problem

Building Blocks of
the BM

Population of
BondMachines

Genetically Evolved
Architectures

M.Mariotti, 30/11/2023 The BondMachine Project 4A



Clustering
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 4B



BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single core).

� Optimizing a single device to support intricate computational work-flows
(multi-cores) over an heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple interconnected devices ?

M.Mariotti, 30/11/2023 The BondMachine Project 4C



BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single core).

� Optimizing a single device to support intricate computational work-flows
(multi-cores) over an heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple interconnected devices ?

M.Mariotti, 30/11/2023 The BondMachine Project 4C



BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single core).

� Optimizing a single device to support intricate computational work-flows
(multi-cores) over an heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple interconnected devices ?

M.Mariotti, 30/11/2023 The BondMachine Project 4C



BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single core).

� Optimizing a single device to support intricate computational work-flows
(multi-cores) over an heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple interconnected devices ?

M.Mariotti, 30/11/2023 The BondMachine Project 4C



BondMachine Clustering

The same logic existing among CP have been extended among different BondMachines
organized in clusters.

Protocols, one ethernet called etherbond and one using UDP called udpbond have been
created for the purpose.

FPGA based BondMachines, standard Linux Workstations, Emulated BondMachines
might join a cluster an contribute to a single distributed computational problem.

M.Mariotti, 30/11/2023 The BondMachine Project 4D



BondMachine Clustering

The same logic existing among CP have been extended among different BondMachines
organized in clusters.

Protocols, one ethernet called etherbond and one using UDP called udpbond have been
created for the purpose.

FPGA based BondMachines, standard Linux Workstations, Emulated BondMachines
might join a cluster an contribute to a single distributed computational problem.

M.Mariotti, 30/11/2023 The BondMachine Project 4D



BondMachine Clustering

The same logic existing among CP have been extended among different BondMachines
organized in clusters.

Protocols, one ethernet called etherbond and one using UDP called udpbond have been
created for the purpose.

FPGA based BondMachines, standard Linux Workstations, Emulated BondMachines
might join a cluster an contribute to a single distributed computational problem.

M.Mariotti, 30/11/2023 The BondMachine Project 4D



BondMachine Clustering

M.Mariotti, 30/11/2023 The BondMachine Project 4E



BondMachine Clustering
A distributed example

distributed counter
package main

import (
"bondgo"

)

func pong() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 3)
out0 = bondgo.Make(bondgo.Output , 5)
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0)+1)
}

}

func main() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 5)
out0 = bondgo.Make(bondgo.Output , 3)

device_1:
go pong()
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0))
}

}

M.Mariotti, 30/11/2023 The BondMachine Project 4F



BondMachine Clustering
A distributed example

M.Mariotti, 30/11/2023 The BondMachine Project 50



BondMachine Clustering
A distributed example

See it working:
https://youtube.com/embed/g9xYHK0zca4

A general result
Parts of the system can be redeployed among different devices without changing the
system behavior (only the performances).

M.Mariotti, 30/11/2023 The BondMachine Project 51

https://youtube.com/embed/g9xYHK0zca4


BondMachine Clustering
Results

Results
� User can deploy an entire HW/SW cluster starting from code written in a high

level description (Go, NNEF, etc)

� Workstation with emulated BondMachines, workstation with etherbond drivers,
standalone BondMachines (FPGA) may join these clusters.

M.Mariotti, 30/11/2023 The BondMachine Project 52



BondMachine Clustering
Results

Results
� User can deploy an entire HW/SW cluster starting from code written in a high

level description (Go, NNEF, etc)

� Workstation with emulated BondMachines, workstation with etherbond drivers,
standalone BondMachines (FPGA) may join these clusters.

M.Mariotti, 30/11/2023 The BondMachine Project 52



Accelerators
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 53



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



How to bring BM accelerators to the Linux system
Depending on the board, several ways of using BM as accelerators are possible:
� USB connection: BM and host connected via USB. A custom protocol over serial

is used to communicate with the board (BMMRP).
� AXI MM on SoC (kernel): The BM and the PS are on the same chip and the

communication is done via AXI MM. BMMRP is also used here but implemented
in custom kernel module.

� AXI MM on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI MM. The Pynq framework is used for the BM.

� AXI Stream on Soc (Pynq): The BM and the PS are on the same chip and the
communication is done via AXI Stream. The Pynq framework is used for the BM.

� AXI Stream on PCIe (Pynq): The BM is connected to the host PC via PCIe and
the communication is done via AXI Stream, the XRT platform is used to
communicate with the BM via Pynq.

M.Mariotti, 30/11/2023 The BondMachine Project 54



AXI MM on SoC (kernel)
Specs

FPGA
� Digilent Zedboard
� Soc: Zynq XC7Z020-CLG484-1
� 512 MB DDR3
� Vivado 2020.2

Workstations
� Dell Precision Tower 3620
� Intel(R) Xeon(R) CPU E3-1270 v5 @

3.60GHz
� 16GB Ram
� Golang 1.18.1

� Intel(R) CPU I5-8500 v5 @ 3GHz
� 16GB Ram
� GCC with -O0

M.Mariotti, 30/11/2023 The BondMachine Project 55



The whole system overview

M.Mariotti, 30/11/2023 The BondMachine Project 56



The Accelerator IP

Hardware Description Language

M.Mariotti, 30/11/2023 The BondMachine Project 57



The Accelerator IP

Hardware Description Language High Level Synthesis

M.Mariotti, 30/11/2023 The BondMachine Project 57



The Accelerator IP

Hardware Description Language High Level Synthesis BondMachine

M.Mariotti, 30/11/2023 The BondMachine Project 57



The Accelerator IP

Hardware Description Language High Level Synthesis BondMachine

Wires:
- a clock signal,
- an input bus,
- an output bus for the
result

M.Mariotti, 30/11/2023 The BondMachine Project 57



Interconnection firmware
The input and output buses are the endpoints that we would like
to have on the linux system.

M.Mariotti, 30/11/2023 The BondMachine Project 58



Interconnection firmware
The input and output buses are the endpoints that we would like
to have on the linux system.

M.Mariotti, 30/11/2023 The BondMachine Project 58



Interconnection firmware
The input and output buses are the endpoints that we would like
to have on the linux system.

Memory mapped
registers using

The AXI protocol

M.Mariotti, 30/11/2023 The BondMachine Project 58



The Advanced eXtensible Interface Protocol

AXI is a communication bus protocol defined by ARM as part
of the Advanced Microcontroller Bus Architecture (AMBA) standard.
There are 3 types of AXI Interfaces:
� AXI Full: for high-performance memory-mapped requirements.
� AXI Lite: for low-throughput memory-mapped communication.
� AXI Stream: for high-speed streaming data.

M.Mariotti, 30/11/2023 The BondMachine Project 59



Block Design

M.Mariotti, 30/11/2023 The BondMachine Project 5A



Linux
Now that we have a custom accelerated hardware, we need a Linux
distro to run on it.

Common Features
Complete system build from source
Allow choice of kernel and bootloader
Support for modifying packages with patches or custom configuration files
Can build cross-toolchains for development
Convenient support for read-only root filesystems
Support offline builds
The build configuration files integrate well with SCM tools

� Yocto
Convenient sharing of build configuration among similar projects (meta-layers)
Larger community (Linux Foundation project)
Can build a toolchain that runs on the target
A package management system

� Buildroot
Simple Makefile approach, easier to understand how the build system works
Reduced resource requirements on the build machine
Very easy to customize the final root filesystem (overlays)

Credits: https://jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html

M.Mariotti, 30/11/2023 The BondMachine Project 5B



Ingredients to build the distro

Kernel config

Linux kernel
configuration

Boot Loader config

U-boot
Boot loader
configuration

Device tree

Data structure
describing
hardware

components

Used by:
Kernel

Boot loader

Created by:
Vivado + GCC

Bitstream (firmware)

File describing
Cells and routing
of the FPGA

Used by
Boot loader
to programm

FPGA

Created by:
Vivado

M.Mariotti, 30/11/2023 The BondMachine Project 5C



kernel module

� The accelerator endpoints are exposed via AXI
memory-mapped as memory location of the arm processor
running Linux.

� To properly use the accelerator from user space, the kernel
has to handle the accelerator endpoints and make them
available to user space.

� We developed a kernel module for our accelerators. It
manages 3 data flows:
Kernel User space

Kernel Firmware

Kernel Firmware

M.Mariotti, 30/11/2023 The BondMachine Project 5D



Kernel from and to user space: char device

The communication are through the
standard read and write system call on a

kernel generated char device

A language has been implemented for
the desired operations

M.Mariotti, 30/11/2023 The BondMachine Project 5E



Kernel to firmware

Once the kernel has correctly decoded the data from the char device,
it can directly write on AXI registers.

AXI registers are
directly written by

the kernel

AXI guarantees consistency and transfer to the firmware input ports.
Moreover the data flow from kernel cannot saturate the PL part.

M.Mariotti, 30/11/2023 The BondMachine Project 5F



Firmware to kernel: IRQ

Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

M.Mariotti, 30/11/2023 The BondMachine Project 60



Firmware to kernel: IRQ

Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

Stop accepting
new changes from

the IP

M.Mariotti, 30/11/2023 The BondMachine Project 60



Firmware to kernel: IRQ

Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

Stop accepting
new changes from

the IP

Send an interrupt
request to the

kernel

M.Mariotti, 30/11/2023 The BondMachine Project 60



Firmware to kernel: IRQ

Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

Stop accepting
new changes from

the IP

Send an interrupt
request to the

kernel

M.Mariotti, 30/11/2023 The BondMachine Project 60



Firmware to kernel: IRQ
Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

Stop accepting
new changes from

the IP

Send an interrupt
request to the

kernel
The kernel get the
IRQ, read the list
of changes and

send each of they
through the char

dev

M.Mariotti, 30/11/2023 The BondMachine Project 60



Firmware to kernel: IRQ
Different story is the data flow from the FPGA to the PS part.
Data can easily flow so fast to saturate and make the PS part
completely unusable.

The firmware
collect all the

changes to send
and fill in a list
using a dedicated

AXI register

Stop accepting
new changes from

the IP

Send an interrupt
request to the

kernel
The kernel get the
IRQ, read the list
of changes and

send each of they
through the char

dev

The kernel notify
the firmware when

done

M.Mariotti, 30/11/2023 The BondMachine Project 60



Library

The char device created by the kernel
is opened by the BMAPI user space library
that implements the BMMRP.

/dev/bm BMAPI Library

(*BMAPI) BMr2owa

(*BMAPI) BMr2ow

(*BMAPI) BMr2o

(*BMAPI) BMi2rw

(*BMAPI) BMi2r

The library functions can be used
by the application

M.Mariotti, 30/11/2023 The BondMachine Project 61



Accelerated application: an example

M.Mariotti, 30/11/2023 The BondMachine Project 62



Accelerated Application

FPGA

AXI
Interconnection

Firmware
BondMachine

AXI BMRRP

Linux
System

Kernel
module

Library
AXI

endpoints

M.Mariotti, 30/11/2023 The BondMachine Project 63



An example

� Definition of an example

� Check of the correctness of the accelerator results

� Benchmark of the execution

M.Mariotti, 30/11/2023 The BondMachine Project 64



Squared Matrix-vector multiplication

M.Mariotti, 30/11/2023 The BondMachine Project 65



Squared Matrix-vector multiplication

M.Mariotti, 30/11/2023 The BondMachine Project 65



Squared Matrix-vector multiplication

M.Mariotti, 30/11/2023 The BondMachine Project 65



Squared Matrix-vector multiplication

2x2

M.Mariotti, 30/11/2023 The BondMachine Project 65



Squared Matrix-vector multiplication

3x3

M.Mariotti, 30/11/2023 The BondMachine Project 65



Squared Matrix-vector multiplication

4x4

M.Mariotti, 30/11/2023 The BondMachine Project 65



Correctness and module debug

To verify the correct computation of the
accelerator:
� a tool to monitor the AXI memory

� write directly to AXI memory mapped
input addresses (through devmem)

� check the AXI memory mapped
output addresses

M.Mariotti, 30/11/2023 The BondMachine Project 66



Correctness and module debug

To verify the correct computation of the
accelerator:
� a tool to monitor the AXI memory

� write directly to AXI memory mapped
input addresses (through devmem)

� check the AXI memory mapped
output addresses

M.Mariotti, 30/11/2023 The BondMachine Project 66



Correctness and module debug

To verify the correct computation of the
accelerator:
� a tool to monitor the AXI memory

� write directly to AXI memory mapped
input addresses (through devmem)

� check the AXI memory mapped
output addresses

M.Mariotti, 30/11/2023 The BondMachine Project 66



An example of error

M.Mariotti, 30/11/2023 The BondMachine Project 67



An example of error

M.Mariotti, 30/11/2023 The BondMachine Project 67



Benchmark: caveats

This is a preliminary work.

We trust some tools:
� Vivado reports
� perf

The FPGA benchmarks do not include the PS part overhead (the comparisons are not
really fair)

M.Mariotti, 30/11/2023 The BondMachine Project 68



Benchmark: the CPU (Golang)

� Time measures: built-in
golang facilities

� Energy measures: perf
� Intel(R) Xeon(R) CPU

E3-1270 v5 @ 3.60GHz
� Go 1.18.2

M.Mariotti, 30/11/2023 The BondMachine Project 69



Benchmark: the CPU (C)

� Time measures: time
� Energy measures: perf
� Intel(R) CPU I5-8500 v5 @ 3GHz
� gcc with -O0

M.Mariotti, 30/11/2023 The BondMachine Project 6A



Benchmark: the FPGA

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 6B



Benchmark: the FPGA

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 6B



Benchmark: the FPGA

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 6B



Benchmark: the FPGA

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 6B



Benchmark: the FPGA

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 6B



Benchmark core clock cycles distributions

M.Mariotti, 30/11/2023 The BondMachine Project 6C



FPGA benchmark summary

M.Mariotti, 30/11/2023 The BondMachine Project 6D



Benchmark core

M.Mariotti, 30/11/2023 The BondMachine Project 6E



Comparisons: Performace

M.Mariotti, 30/11/2023 The BondMachine Project 6F



Comparisons: Energy

M.Mariotti, 30/11/2023 The BondMachine Project 70



Misc
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 71



BondMachine recap

� The BondMachine is a software
ecosystem for the dynamical
generation (from several HL types of
origin) of computer architectures that
can be synthesized of FPGA and

� used as standalone devices,

� as clustered devices,

� and as firmware for computing
accelerators.

M.Mariotti, 30/11/2023 The BondMachine Project 72



BondMachine recap

� The BondMachine is a software
ecosystem for the dynamical
generation (from several HL types of
origin) of computer architectures that
can be synthesized of FPGA and

� used as standalone devices,

� as clustered devices,

� and as firmware for computing
accelerators.

M.Mariotti, 30/11/2023 The BondMachine Project 72



BondMachine recap

� The BondMachine is a software
ecosystem for the dynamical
generation (from several HL types of
origin) of computer architectures that
can be synthesized of FPGA and

� used as standalone devices,

� as clustered devices,

� and as firmware for computing
accelerators.

M.Mariotti, 30/11/2023 The BondMachine Project 72



BondMachine recap

� The BondMachine is a software
ecosystem for the dynamical
generation (from several HL types of
origin) of computer architectures that
can be synthesized of FPGA and

� used as standalone devices,

� as clustered devices,

� and as firmware for computing
accelerators.

M.Mariotti, 30/11/2023 The BondMachine Project 72



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022
M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Project timeline

� CCR 2015 First ideas, 2016 Poster, 2017 2022
2023 Talk

� InnovateFPGA 2018 Iron Award, Grand Final at
Intel Campus (CA) USA

� Invited lectures: "Advanced Workshop on
Modern FPGA Based Technology for Scientific
Computing", ICTP 2019 and 2022

� Invited lectures: "NiPS Summer School 2019"
� Golab 2018 talk
� Several other talks and posters, ISGC 2019,

SOSC 2022, 2023, INFN ML Hackathon 2022
� Article published on Parallel Computing,

Elsevier 2022

M.Mariotti, 30/11/2023 The BondMachine Project 73



Fabrics
The HDL code for the BondMachine has been tested on these devices/system:
� Digilent Basys3 - Xilinx Artix-7 - Vivado
� Kintex7 Evaluation Board - Vivado
� Digilent Zedboard and ebaz4205- Xilinx Zynq 7020 - Vivado
� ZC702 - Xilinx Zynq 7020 - Vivado
� Alveo boards - Xilinx - Vivado/Vitis
� Linux - Iverilog
� ice40lp1k icefun icebreaker icesugarnano - Lattice - Icestorm
� Terasic De10nano - Intel Cyclone V - Quartus
� Arrow Max1000 - Intel Max10 - Quartus

Within the project other firmware have been written or tested:
� Microchip ENC28J60 Ethernet interface controller.
� Microchip ENC424J600 10/100 Base-T Ethernet interface controller.
� ESP8266 Wi-Fi chip.

M.Mariotti, 30/11/2023 The BondMachine Project 74



Use cases

Two use cases in Physics experiments are currently being developed:
� Real time pulse shape analysis in neutron detectors

I bringing the intelligence to the edge
� Test beam for space experiments

I increasing testbed operations efficiency

And not only in Physics:
� Machine learning accelerators

I Ultra low latency inference
� Edge computing

I Power efficiency for IoT
I Heterogeneous computing

� Exotic HW/SW/OS architectures
I Research in innovative OS design

M.Mariotti, 30/11/2023 The BondMachine Project 75



Machine Learning
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 76



Machine Learning with BondMachine

Architectures with multiple interconnected processors like the ones produced by the
BondMachine Toolkit are a perfect fit for Neural Networks and Computational Graphs.

Several ways to map this structures to BondMachine has been developed:
� A native Neural Network library
� A Tensorflow to BondMachine translator
� An NNEF based BondMachine composer

M.Mariotti, 30/11/2023 The BondMachine Project 77



Machine Learning with BondMachine

Architectures with multiple interconnected processors like the ones produced by the
BondMachine Toolkit are a perfect fit for Neural Networks and Computational Graphs.

Several ways to map this structures to BondMachine has been developed:
� A native Neural Network library
� A Tensorflow to BondMachine translator
� An NNEF based BondMachine composer

M.Mariotti, 30/11/2023 The BondMachine Project 77



Machine Learning with BondMachine
Native Neural Network library

The tool neuralbond allow the creation of BM-based neural chips from an API go
interface.

� Neurons are converted to BondMachine connecting processors.
� Tensors are mapped to CP connections.

M.Mariotti, 30/11/2023 The BondMachine Project 78



TensorFlow™ to Bondmachine
tf2bm

TensorFlow™ is an open source software library for numerical computation using data
flow graphs.

Graphs can be converted to BondMachines with the tf2bm tool.

M.Mariotti, 30/11/2023 The BondMachine Project 79



Machine Learning with BondMachine
NNEF Composer

Neural Network Exchange Format (NNEF) is a standard from Khronos Group to enable
the easy transfer of trained networks among frameworks, inference engines and devices

The NNEF BM tool approach is to descent NNEF models and build BondMachine
multi-core accordingly

This approch has several advandages over the previous:
� It is not limited to a single framework
� NNEF is a textual file, so no complex operations are needed to read models

M.Mariotti, 30/11/2023 The BondMachine Project 7A



Specs

FPGA
� Digilent Zedboard
� Soc: Zynq XC7Z020-CLG484-1
� 512 MB DDR3
� Vivado 2020.2
� 100MHz
� PYNQ 2.6 (custom build)

M.Mariotti, 30/11/2023 The BondMachine Project 7B



Different boards
All tests were done using the Zedboard device, but BondMachine supports different boards also from
different vendors (Intel lattice).

Xilinx Zynq-7000 SoC PCIe card FPGA cluster ICSC
85000 logic cells 2800000 logic cells Xilinx and Intel FPGAs
53200 look-up tables (LUTs) 1732000 Look-Up Tables (LUTs)

National supercomputing center (ICSC)

Resources are a key aspect
and often a bottleneck ...

M.Mariotti, 30/11/2023 The BondMachine Project 7C



BM inference: A first tentative idea
A neuron of a neural network
can be seen as Connecting Processor of BM

X1

X2

X3

X4

inputs

H1

hidden layer

S1

S2

output layer

Y1

Y2

outputs

M.Mariotti, 30/11/2023 The BondMachine Project 7D



From idea to implementation
Starting from High Level Code, a NN model trained with TensorFlow and exported in a
standard interpreted by neuralbond that converts nodes and weights of the network
into a set of heterogeneous processors.

High Level Code

Firmware

M.Mariotti, 30/11/2023 The BondMachine Project 7E



A first test
Dataset info:
� Dataset name: Banknote

Authentication
� Description: Dataset on the

distinction between genuine and
counterfeit banknotes. The data was
extracted from images taken from
genuine and fake banknote-like
samples.

� N. features: 4
� Classification: binary
� Samples: 1097

Neural network info:
� Class: Multilayer perceptron fully

connected
� Layers:

1 An hidden layer with 1 linear neuron
2 One output layer with 2 softmax

neurons

Graphic representation:

M.Mariotti, 30/11/2023 The BondMachine Project 7F



ML Hands-on
Hands-on N.11

It will be shown how:

� To build a BondMachine with a trained Neural Network

� Interact with the BondMachine via Jupyter

M.Mariotti, 30/11/2023 The BondMachine Project 80



Benchcore

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 81



Benchcore

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 81



Benchcore

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 81



Benchcore

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 81



Benchcore

Benchmark an IP is not an
easy task.

Fortunately we have a
custom design and an
FPGA.

We can put the benchmarks
tool inside the accelerator.

M.Mariotti, 30/11/2023 The BondMachine Project 81



Inference evaluation

Evaluation metrics used:
� Inference speed: time taken to predict a sample i.e. time between the arrival of

the input and the change of the output measured with the benchcore;
� Resource usage: luts and registers in use;
� Accuracy: as the percentage of error on predictions.

� σ: 2875.94

� Mean: 10268.45

� Latency: 102.68 µs

Resource usage
resource value occupancy

regs 15122 28.42%
luts 11192 10.51%

M.Mariotti, 30/11/2023 The BondMachine Project 82



Optimizations
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 83



A first example of optimization

Remember the softmax function?

σ(zi ) = ezi∑N
j=1 ezj

ex =
∑K

l=0
x l

l!

M.Mariotti, 30/11/2023 The BondMachine Project 84



A first example of optimization

ex =
∑K

l=0
x l

l! K can be customize as needed

Improves latency

Decreases accuracy

benefit

drawback

tradeoff

M.Mariotti, 30/11/2023 The BondMachine Project 85



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 16

� σ: 2106.32

� Mean: 7946.16

� Latency: 79 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 13

� σ: 1669.88

� Mean: 6312.26

� Latency: 63 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 10

� σ: 1232.47

� Mean: 4766.75

� Latency: 47 µs

� Prediction: 100%

mean σ

prob0 1.6162E-07 1.1013E-07

prob1 1.6525E-07 1.1831E-07

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 8

� σ: 1015.50

� Mean: 3913.66

� Latency: 39 µs

� Prediction: 100%

mean σ

prob0 6.5562E-05 1.7607E-05

prob1 6.6098E-05 1.7609E-05

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 5

� σ: 740

� Mean: 2911

� Latency: 29 µs

� Prediction: 100%

mean σ

prob0 3.1070E-05 7.5290E-05

prob1 3.1070E-05 7.5290E-05

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 3

� σ: 394.10

� Mean: 1750.93

� Latency: 17 µs

� Prediction: 100%

mean σ

prob0 0.0053 0.0090

prob1 0.0053 0.0090

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 2

� σ: 268.69

� Mean: 1311.11

� Latency: 13.11 µs

� Prediction: 100%

mean σ

prob0 0.0193 0.0232

prob1 0.0193 0.0232

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization

Changing number of K of the exponential factors in the softmax function...

� K : 20

� σ: 2875.94

� Mean: 10268.45

� Latency: 102 µs

� Prediction: 100%

mean σ

prob0 1.6470E-07 1.2332E-07

prob1 1.6623E-07 1.2142E-07

� K : 1

� σ: 173.25

� Mean: 923.71

� Latency: 9.23 µs

� Prediction: 100%

mean σ

prob0 0.0990 0.1641

prob1 0.0990 0.1641

M.Mariotti, 30/11/2023 The BondMachine Project 86



Results of optimization
K Inference time
1 9.23 µs
2 13.11 µs
3 17.50 µs
5 29.11 µs
8 39.13 µs
10 47.66 µs
13 63.12 µs
16 79.46 µs
20 102.68 µs

Reduced inference times by a factor of 10 ... only by decreasing the number of
iterations.

M.Mariotti, 30/11/2023 The BondMachine Project 87



Analysis notebook

Another notebook is used to compare runs from different accelerators.

Software
prob0 prob1 class

0.6895 0.3104 0
0.5748 0.4251 0
0.4009 0.5990 1

BondMachine
prob0 prob1 class

0.6895 0.3104 0
0.5748 0.4251 0
0.4009 0.5990 1

The output of the bm corresponds to the software output

Open the notebook

M.Mariotti, 30/11/2023 The BondMachine Project 88



Why change numerical precision?
The same floating point number can be represented in different ways

Pro
� Reduced memory usage
� Increased computational speed
� Lower power consumption

Cons
� Reduced accuracy
� Increased rounding errors
� Limited range

M.Mariotti, 30/11/2023 The BondMachine Project 89



Data types in BondMachine: BMnumbers

M.Mariotti, 30/11/2023 The BondMachine Project 8A



Data types in BondMachine: BMnumbers

M.Mariotti, 30/11/2023 The BondMachine Project 8A



Floating point FloPoCo
FloPoCo is an open source software project that provides a toolchain for automatically
generating floating-point arithmetic operators implemented in hardware.

Features:
� exponent size and mantissa size can

take arbitrary values
� 0, ∞ and NaN in explicit exception bits

I not as special exponent values
I two more exponent values available

in FloPoCo
I hardware efficient

M.Mariotti, 30/11/2023 The BondMachine Project 8B



Tests FloPoCo implementation

We’ve already seen the pros and cons of changing the numerical precision

Pro
� Reduced memory usage
� Increased computational speed
� Lower power consumption

Cons
� Reduced accuracy
� Increased rounding errors
� Limited range

� How much computationally faster are the arithmetic operations implemented by
FloPoCo?

� How do latency, accuracy, occupancy and power consumption vary by changing
the numerical precision and the exponent of the exponential?

M.Mariotti, 30/11/2023 The BondMachine Project 8C



Tests and results with FloPoCo

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo
32bit IEEE754

K Latency Err prob0 Err prob1
1 9.23 µs 0.0990 0.0990
2 13.11 µs 0.0193 0.0193
3 17.50 µs 0.0053 0.0053
5 29.11 µs 3.1070E-05 3.1071E-05
8 39.13 µs 6.5562E-07 6.6098E-07
10 47.66 µs 1.6162E-07 1.6525E-07
13 63.12 µs 1.6470E-07 1.6652E-07
16 79.46 µs 1.6470E-07 1.6652E-07
20 102.68 µs 1.6470E-07 1.6652E-07

32bit FloPoCo

K Latency Err prob0 Err prob1
1 3.89 µs 0.0990 0.0990
2 5.47 µs 0.0193 0.0193
3 6.84 µs 0.0053 0.0053
5 9.90 µs 0.0001 0.0001
8 14.39 µs 6.5890E-07 6.5425E-07
10 16.79 µs 1.7316E-07 1.7770E-07
13 22.07 µs 1.7610E-07 1.8029E-07
16 26.25 µs 1.7610E-07 1.8029E-07
20 31.18 µs 1.7610E-07 1.8029E-07

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo
32bit FloPoCo

K Latency Err prob0 Err prob1
1 3.89 µs 0.0990 0.0990
2 5.47 µs 0.0193 0.0193
3 6.84 µs 0.0053 0.0053
5 9.90 µs 0.0001 0.0001
8 14.39 µs 6.5890E-07 6.5425E-07
10 16.79 µs 1.7316E-07 1.7770E-07
13 22.07 µs 1.7610E-07 1.8029E-07
16 26.25 µs 1.7610E-07 1.8029E-07
20 31.18 µs 1.7610E-07 1.8029E-07

19bit FloPoCo

K Latency Err prob0 Err prob1
1 3.80 µs 0.1229 0.009
2 5.04 µs 0.0193 0.0193
3 6.44 µs 0.0054 0.0054
5 9.21 µs 0.00024 0.00025
8 13.33 µs 0.00010 9.9151E-05
10 15.95 µs 0.00010 9.9151E-05
13 20.17 µs 0.00010 9.9151E-05
16 23.70 µs 0.00010 9.9151E-05
20 29.67 µs 0.00010 9.9151E-05

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo
19bit FloPoCo

K Latency Err prob0 Err prob1
1 3.80 µs 0.1229 0.009
2 5.04 µs 0.0193 0.0193
3 6.44 µs 0.0054 0.0054
5 9.21 µs 0.00024 0.00025
8 13.33 µs 0.00010 9.9151E-05
10 15.95 µs 0.00010 9.9151E-05
13 20.17 µs 0.00010 9.9151E-05
16 23.70 µs 0.00010 9.9151E-05
20 29.67 µs 0.00010 9.9151E-05

16bit FloPoCo

K Latency Err prob0 Err prob1 Pred
1 3.59 µs 1.3935 0.099 99.27%
2 5.93 µs 0.0192 0.0191 100%
3 6.21 µs 0.0057 0.0057 100%
5 8.74 µs 0.00125 0.0019 100%
8 12.54 µs 0.00125 0.0019 100%
10 15.04 µs 0.0012 0.0019 100%
13 19.32 µs 0.0026 0.0025 99.63%
16 22.87 µs 0.0037 1.8113 99.63%
20 27.91 µs 0.0060 4.1385 98.54%

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Tests and results with FloPoCo
16bit FloPoCo

K Latency Err
prob0 Err prob1 Pred

1 3.59 µs 1.3935 0.099 99.27%
2 5.93 µs 0.0192 0.0191 100%
3 6.21 µs 0.0057 0.0057 100%
5 8.74 µs 0.00125 0.0019 100%
8 12.54 µs 0.00125 0.0019 100%
10 15.04 µs 0.0012 0.0019 100%
13 19.32 µs 0.0026 0.0025 99.63%
16 22.87 µs 0.0037 1.8113 99.63%
20 27.91 µs 0.0060 4.1385 98.54%

11bit FloPoCo

K Latency Err
prob0 Err prob1 Pred

1 3.49 µs 0.2235 0.0992 97.45%
2 4.88 µs 0.0221 0.0168 98.54%
3 5.84 µs 0.0156 0.0126 98.54%
5 8.07 µs 0.0138 0.0110 98.54%
8 11.51 µs 0.0138 0.0110 98.54%
10 13.78 µs 0.0138 0.0110 98.54%
13 12.87 µs 0.0175 1.5069 97.09%
16 10.61 µs 0.0187 2.5789 96.72%
20 8.95 µs 0.0273 1.223 94.90%

M.Mariotti, 30/11/2023 The BondMachine Project 8D



Results with FloPoCo

How do latency, accuracy, occupancy and power consumption vary by changing the
numerical precision ?

Bits Luts Usage
11 4704 8.84%
16 7738 14.54%
19 7202 13.54%
32 14306 26.89%

Bits Regs Usage
11 3828 3.59%
16 5487 5.15%
19 5717 5.37%
32 9264 8.70%

Bits Power
11 0.096W
16 0.163W
19 0.198W
32 0.487W

M.Mariotti, 30/11/2023 The BondMachine Project 8E



Linear quantization
Linear quantization is a widely used technique in signal processing, in particular in neural
networks reduces memory usage and computational complexity by representing values
with fewer bits, enabling efficient deployment on resource-constrained devices (but it may
introduce some loss of accuracy).

BMnumbers translates the floating point
number into the quantized equivalent
using the data type lqs[s]t[t]

Corrected signed integer instructions are used
in hardware

Quantized networks can be simulated to check
if the precision is acceptable.

M.Mariotti, 30/11/2023 The BondMachine Project 8F



Quantization: tests, results and analysis
Linear quantization reduces memory usage and computational complexity by
representing values with fewer bits, enabling efficient deployment on resource
constrained devices (but it may introduce some loss of accuracy)
FloPoCo Quantization

FloPoCo
Bits Luts Regs Power Latency Pred
16 7738 (14%) 5487 (5%) 0.163W 6.21 µs 100%
32 14306 (26%) 9264 (8%) 0.487W 6.84 µs 100%

Bits Luts Regs Power Latency Pred

8 2013 (3%) 2054 (2%) 0.024W 1.60 µs 91%
16 5259 (9%) 2774 (3%) 0.087W 1.60 µs 99%
32 11823 (22%) 4718 (5%) 0.203W 1.61 µs 99%

M.Mariotti, 30/11/2023 The BondMachine Project 90



ML Hands-on
Hands-on N.12

It will be shown how:

� To build a BondMachine with a trained Neural Network ...
� ... with floating point 16bit precision

� Interact with the BondMachine via Jupyter

M.Mariotti, 30/11/2023 The BondMachine Project 91



ML Hands-on
Hands-on N.13

It will be shown how:

� To build a BondMachine with a trained Neural Network ...
� ... with fixed point 16bit

� Interact with the BondMachine via Jupyter

M.Mariotti, 30/11/2023 The BondMachine Project 92



Fragments composition

� The tools (neuralbond+basm) create a graph
of relations among fragments of assembly

� Not necessarily a fragment has to be mapped
to a single CP

� They can arbitrarily be rearranged into CPs
� The resulting firmwares are identical in term of

the computing outcome, but differs in
occupancy and latency.

M.Mariotti, 30/11/2023 The BondMachine Project 93



Fragments composition

� The tools (neuralbond+basm) create a graph
of relations among fragments of assembly

� Not necessarily a fragment has to be mapped
to a single CP

� They can arbitrarily be rearranged into CPs
� The resulting firmwares are identical in term of

the computing outcome, but differs in
occupancy and latency.

M.Mariotti, 30/11/2023 The BondMachine Project 93



Fragments composition

� The tools (neuralbond+basm) create a graph
of relations among fragments of assembly

� Not necessarily a fragment has to be mapped
to a single CP

� They can arbitrarily be rearranged into CPs
� The resulting firmwares are identical in term of

the computing outcome, but differs in
occupancy and latency.

M.Mariotti, 30/11/2023 The BondMachine Project 93



Fragments composition

� The tools (neuralbond+basm) create a graph
of relations among fragments of assembly

� Not necessarily a fragment has to be mapped
to a single CP

� They can arbitrarily be rearranged into CPs
� The resulting firmwares are identical in term of

the computing outcome, but differs in
occupancy and latency.

M.Mariotti, 30/11/2023 The BondMachine Project 93



CP pruning hands-on
Hands-on N.14

Goals are:

� Prune a processor and find out the outcomes

M.Mariotti, 30/11/2023 The BondMachine Project 94



CP collapsing hands-on
Hands-on N.15

Goals are:

� Collapse processors and find out the outcomes

M.Mariotti, 30/11/2023 The BondMachine Project 95



hands-on
Hands-on N.16

Goals are:

� Copy a project directory and try pruning, collapsing, simulating and the assembly
of the neurons

M.Mariotti, 30/11/2023 The BondMachine Project 96



Several ways for customization and optimization

The great control over of the architectures generated by the BondMachine gives several
possible optimizations.

Mixing hardware
and software
optimizations

Fine control over
occupancy vs

latency

HW instructions
swapping

Software based
functions

CP Pruning
and/or collapsing

Fragment
composition

Fabric
independent

HW/SW
Templates

M.Mariotti, 30/11/2023 The BondMachine Project 97



Accelerator in a cloud
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 98



Bring it to cloud level: why?
So we “know” how to build firmware for ML inference in a vendor agnostic way. Can we
integrate it with cloud-native inference as-a-service solution to get any
advantage?
� Ease of usage and flexibility

I Being able to deploy an inference algorithm on FPGA without caring for “where” the
resources are

I Accessing ML predictions from a remote computing resource without having in place
any specialized hardware or software piece

• At the cost of increased latency → to be carefully evaluated case by case
I Sharing the access to the same model predictions with other collaborators

� Democratic access and management
I Leveraging cloud/k8s native tools, you can reuse a well established way to

orchestrate the bookkeeping and distribution of the payloads
� Easy Prototyping

I Automation of the build and load process -> the framework take care of vendor
specific details

CHEP 2023

M.Mariotti, 30/11/2023 The BondMachine Project 99

https://indico.jlab.org/event/459/contributions/11826/


Implementing a KServe FPGA extension
The remote inference still an open field on many aspects, regardless we started from one of the main
emerging ecosystems for ML: Kubeflow
KServe in particular is the component responsible for providing inference endpoint as-a-Service
Our simple workflow:

1 Train your model with your preferred
framework (e.g. TF)

2 Store the model on a remote storage

I S3 storage is the one used for our
tests

3 Deploying the same model on a remote
FPGA via a user friendly UI

4 Get back the details of the endpoint to
interact with

I Either via HTTP or grpc protocols

CHEP 2023

M.Mariotti, 30/11/2023 The BondMachine Project 9A

https://indico.jlab.org/event/459/contributions/11826/


Kserve extension implementation
The main components that we developed are:

� Custom WebUI to hide complexity to the user

I A Kubeflow managed solution exists, we are
planning to integrate this work eventually

• We need additional metadata to be
passed (e.g. board model, provider,
hls engine etc)

� Translate a model load request into conditional
actions

I Load the bitstream file from the remote
location directly

• Pre built by the user on its own
I building a firmware “seamlessly” on an

external building machine

� Eventually load the firmware on the FPGA
board via the development of a grpc server
installed on the machine that have access to the
board

CHEP 2023

M.Mariotti, 30/11/2023 The BondMachine Project 9B

https://indico.jlab.org/event/459/contributions/11826/


Where are we...
We have validated an end to end workflow
with a generic ML algorithm.
With the following steps:

� Load the model description to an S3 bucket

� Report the model URL and name in the
WebUI
I Selecting HLS engine (BM in this case)

� Wait for the build server to build and store your
firmware for the available FPGAs
I Store back the firmware on S3 bucket for

further reuse
I Load the created firmware on a FPGA

� Publish the endpoint to send the prediction requests
to and then do your prediction.

CHEP 2023

M.Mariotti, 30/11/2023 The BondMachine Project 9C

https://indico.jlab.org/event/459/contributions/11826/


Conclusions and Future directions
1 Introduction

Challenges
FPGA
Architectures
Abstractions

2 The BondMachine project
Architectures handling
Architectures molding
Bondgo
Basm
API

3 Clustering
An example
Video
Distributed architecture

4 Accelerators
Hardware
Software
Tests
Benchmark

5 Misc
Project timeline
Supported boards
Use cases

6 Machine Learning
Train
Benchmark

7 Optimizations
Softmax example
Results
Model’s compression
Fragments compositions

8 Accelerator in a cloud
Bring it to cloud level: why and how
Implementing a KServe FPGA extension
Where are we...

9 Conclusions and Future directions
Conclusions
Ongoing
Future

M.Mariotti, 30/11/2023 The BondMachine Project 9D



Towards an OS Hands-on
Hands-on N.17

It will be shown:

� How to build a BondMachine with a close interaction with the host machine

� A shell-like BM application from Jupyter

M.Mariotti, 30/11/2023 The BondMachine Project 9E



Conclusions

The BondMachine is a new kind of computing device made possible in practice only by the
emerging of new re-programmable hardware technologies such as FPGA.

The result of this process is the construction of a computer architecture that is not anymore a
static constraint where computing occurs but its creation becomes a part of the computing

process, gaining computing power and flexibility.

Over this abstraction is it possible to create a full computing Ecosystem, ranging from small
interconnected IoT devices to Machine Learning accelerators.

M.Mariotti, 30/11/2023 The BondMachine Project 9F



Ongoing
The project

� Move all the code to github

� Documentation

� First DAQ use case

� Complete the inclusion of Intel and Lattice FPGAs

� ML inference in a cloud workflow

� Fist steps in the direction of a full OS

M.Mariotti, 30/11/2023 The BondMachine Project A0



Ongoing
Accelerators

� Different data types and operations, especially low and trans-precision

� Different boards support, especially data center accelerator

� Compare with GPUs

� Include some real power consumption measures

M.Mariotti, 30/11/2023 The BondMachine Project A1



Ongoing
Machine Learning

With ML we are still at the beginning ...

� Quantization

� More datasets: test on other datasets with more features and multiclass
classification

� Neurons: increase the library of neurons to support other activation functions

� Evaluate results: compare the results obtained with other technologies (CPU and
GPU) in terms of inference speed and energy efficiency

M.Mariotti, 30/11/2023 The BondMachine Project A2



Future work

� Include new processor shared objects and currently unsupported opcodes

� Extend the compiler to include more data structures

� Assembler improvements, fragments optimization and others

� Improve the networking including new kind of interconnection firmware

What would an OS for BondMachines look like ?

M.Mariotti, 30/11/2023 The BondMachine Project A3



Future work

� Include new processor shared objects and currently unsupported opcodes

� Extend the compiler to include more data structures

� Assembler improvements, fragments optimization and others

� Improve the networking including new kind of interconnection firmware

What would an OS for BondMachines look like ?

M.Mariotti, 30/11/2023 The BondMachine Project A3



Future work

� Include new processor shared objects and currently unsupported opcodes

� Extend the compiler to include more data structures

� Assembler improvements, fragments optimization and others

� Improve the networking including new kind of interconnection firmware

What would an OS for BondMachines look like ?

M.Mariotti, 30/11/2023 The BondMachine Project A3



Future work

� Include new processor shared objects and currently unsupported opcodes

� Extend the compiler to include more data structures

� Assembler improvements, fragments optimization and others

� Improve the networking including new kind of interconnection firmware

What would an OS for BondMachines look like ?

M.Mariotti, 30/11/2023 The BondMachine Project A3



Future work

� Include new processor shared objects and currently unsupported opcodes

� Extend the compiler to include more data structures

� Assembler improvements, fragments optimization and others

� Improve the networking including new kind of interconnection firmware

What would an OS for BondMachines look like ?

M.Mariotti, 30/11/2023 The BondMachine Project A3



website: http://bondmachine.fisica.unipg.it
code: https://github.com/BondMachineHQ
parallel computing paper: link
contact email: mirko.mariotti@unipg.it

M.Mariotti, 30/11/2023 The BondMachine Project A4

http://bondmachine.fisica.unipg.it
https://github.com/BondMachineHQ
https://www.sciencedirect.com/science/article/pii/S0167819121001150
mailto:mirko.mariotti@unipg.it

	Introduction
	Challenges
	FPGA
	Architectures
	Abstractions

	The BondMachine project
	Architectures handling
	Architectures molding
	Bondgo
	Basm
	API

	Clustering
	An example
	Video
	Distributed architecture

	Accelerators
	Hardware
	Software
	Tests
	Benchmark

	Misc
	Project timeline
	Supported boards
	Use cases

	Machine Learning
	Train
	Benchmark

	Optimizations
	Softmax example
	Results
	Model's compression
	Fragments compositions

	Accelerator in a cloud
	Bring it to cloud level: why and how
	Implementing a KServe FPGA extension
	Where are we...

	Conclusions and Future directions
	Conclusions
	Ongoing
	Future


